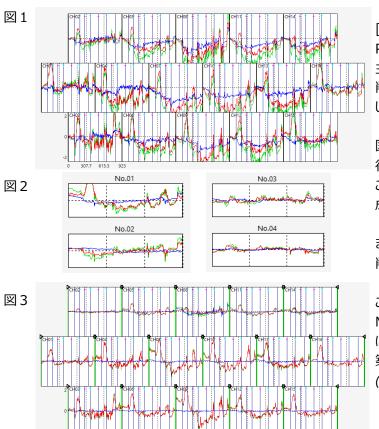

DPPT (Data Pre-Processing Tool)



info@brsystems.jp https://www.brsystems.jp/ October,2019

DPPTはデータ前処理ツールです。NIRS装置メーカー、チャネル数に制限は有りません。 MATLABで動きます。Standalone Application版のため、お客様はMATLAB本体のご購入は不要です。

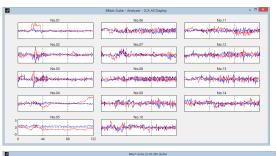
tPCA

[tPCA (targeted Principal Component Analysis)] PCAはSVD(列センタリング)法です。

主成分分析は、大きな影響を持つ成分の次数から順に得られます。 削除したい成分の次数を除去し、残りの次数成分でデータを再構築 し、ノイズ成分を低減させます。

図1の原波形にPCAを掛け主成分を解きますと、図2の主成分が得られます(ここでは4次成分まで表示)。

ここで、第2成分を除去しますと、図3の波形が算出されます。体動成分のdeoxyが平均zeroになり、oxyの信号が抽出されています。


また、波形全体を主成分分析しますと、残して置きたい箇所も、 削除次数の影響を受け、低減する場合があります。

こういう場合は、targetedPCAのやり方が有ります。

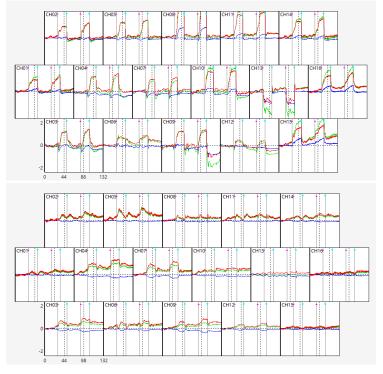
MA(Motion Artifacts)の影響がある箇所を取り出し、その箇所に対し主成分分析を掛け、MA成分を除去し、原波形に戻して再構築するやり方です。

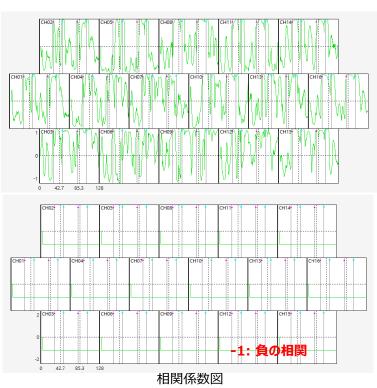
(Yucel et al, J Innov Optical Health Sciences 7,2014)

ICA

[ICA(Independent Component Analysis)]

- ・ICA(独立成分分析)は、データの独立性に注目します。非ガウス性が強い成分を順次抽出します。次数の順番は初期値に依存します。
- ・ICAを指定した区間に対し行います。
- ・課題に対する信号成分を抽出するために、不要な次数を削除します。
- ・不要な次数を削除後、波形を復元できます。
- ・Approach/Nonlinearityの選択、初期値は任意に設定できます。デフォルトは0です。
- ・初期値を複数与えて計算し、頻度高く表れる独立成分波形が、best estimateです。
- ・例えば、次の図②の測定開始後30秒付近のノイズの影響を削除するため、図①のICA結果の1次を削除します。
- ・その結果が図③右側の図に反映され、ノイズの影響が低減されたことが 確認できます。


CBSI


CBSI(Correlation Based Signal Improvement)という血流動態分離法です。

左上図は、お辞儀を2回した際の、前頭葉の脳信号(OEG16)です。

oxyとdeoxyが体動の影響で左のチャネル領域(ch $10\sim16$)で同位相に触れています。この測定データをCBSI処理しますと左下図を得ます。左のチャネル領域で、oxy,deoxyの賦活が大きく削減することが判ります。

本ツールの機能の相関(oxy vs deoxy)係数図は、各々右上下図の様になります。

WAVELET

(1)分解

wavelet関数を選定し、分解レベル数を設定し、 原信号を近似と詳細に分解します。

(2)閾値処理

各レベルの詳細波形に対し、閾値を計算し、 閾値処理します。

(3)再構築

近似波形に、各レベルの閾値処理された詳細波形を加算して、ノイズ除去波形を得ます。

waveletは、局在、、周波数成分のノイズ削除に適しています。 MATLABの一次元SWTノイズ除去ツールを使用します。 waveletの母関数、分解レベル数、閾値処理方法、等を選択してノイズ除去します。

wavelet の母関数(harr, mexican hat, symmlets, - -) は、fft の sin/cosに相当します。

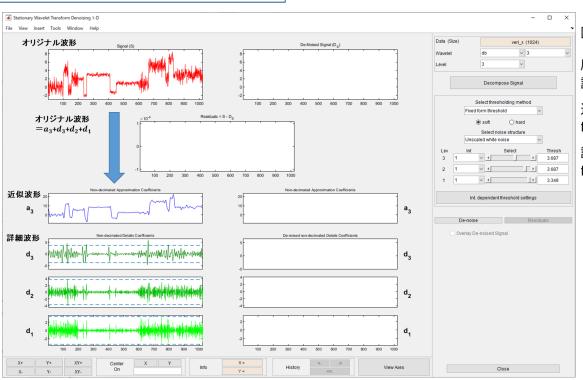


図1

原波形を近似と 詳細に分解

近似:lowpass fileter

詳細l:highpass filter

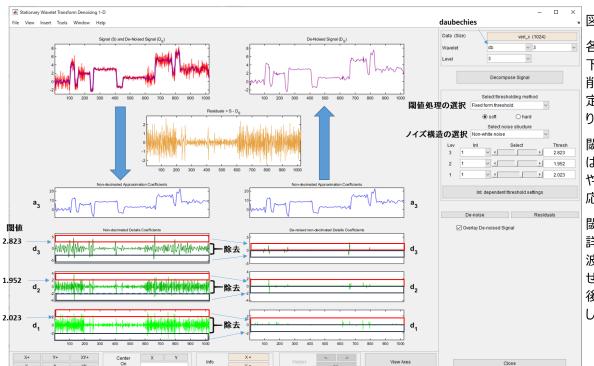
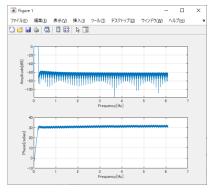


図2

各レベルで閾値以下の係数成分を削除。閾値の算定方法は複数有ります。


閾値以下の係数 は信号のランダム やノイズ部分に対 応します。

閾値処理された 詳細波形と近似 波形を重ね合わ せて、ノイズ除去 後の波形を算出 します。

Filtering

図1

200 All Charles de plantes de la company de constructed determinate the transport of the second 22- William Waller Commence TANK TIPA ATAMBARAN MENANDAN M The State of the S Acet the Makes mention between the same of Committee of the second The Street Control of 20 Philippinana - Committee of the Comm may have harden made in the manufacture of the second colophydaethiatethiatethiatethiatethiateth The second second second second second Wat Dordan was a server of the Marie Carreston Commence San Maria Carlo Ca The Control of the Co Howard State of the Commence o TO CONTRACT TO A STREET OF THE The second second 61 015 02 025 03 036 64 045 03

図3-2

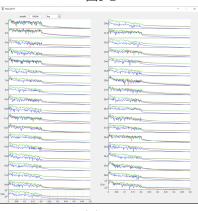


図2

- fNIRS信号の主な構成要素は、呼吸 $(0.2\sim0.3[Hz])$,心拍 $(1.0\sim1.5[Hz])$, 測定時ノイズ(電気ノイズ,等),頭皮血流の影響,全身的な血圧変動(Mayer波など),体動、そして本命の脳賦活信号です。
- フィルタは通常、呼吸/心拍/測定時ノイズを除去するために使用されます。 頭皮血流の影響、体動は、実験デザイン、他の方法で除去します。
- このツール(図1)はディジタルフィルタ(MATLABベース)です。
- ・ディジタルフィルタとして,
- IIR(infinite impulse response filter,butterworth)
- FIR(finite impulse response filter,equi-ripple) を用意

IIR,FIRの手法はそれぞれに長所、短所があるので、設定値を色々試して、最適な値を求めます。その際、フィルタの効き具合を確認できる振幅応答、位相応答図を表示させて検討します。(図2)

- ・一例として、生データの原波形(図3-1)とそのFFT(図3-2)に対しFIR, BandPass(0.01--0.2[Hz])フィルタを掛けた後の波形(図4-1)とそのFFT(図4-2)を示します。このFFTの比較から、BandPassが有効に効いていることが確認できます。
- ・フィルタの掛け方で、原波形の特性は大きく影響を受けるため、極めて重要なデータ前処理です。
- ・フィルタとしてBandPassを論理性から推奨している研究者が多いです。 その範囲は、下限の多くは0.01[Hz]で上限は0.08,0.09,0.1,0.2,0.5,etc., [Hz]とその用途に拠り異なります。
- ・フィルタ処理後のデータを保存し、次の処理に移行します。原データの仕様、イベントIDは継承されます。
- ・対象機種に制限は有りません。

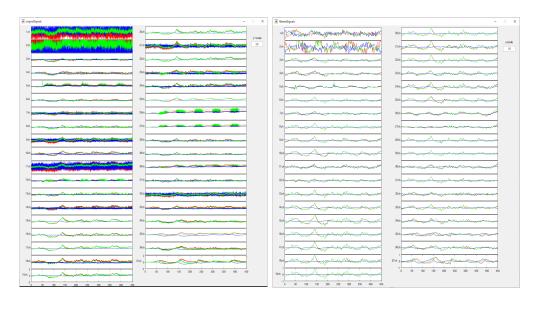


図3-1

図4-1

図4-2

本社 〒248-0007

神奈川県鎌倉市大町 4-9-6

神奈川県逗子市小坪 5-23-6436

ビー・アール・システムズ株式会社

事務所 〒249-0008 Phone: 0467-40-4318

Fax:0467-40-4348

Email: info@brsystems.jp http://www.brsystems.jp